HyspIRI and ECOSTRESS Applied Science and Research Activities Christine Lee (Jet Propulsion Laboratory, California Institute of Technology) Jeff Luvall (MSFC), Simon Hook (Jet Propulsion Laboratory, California Institute of Technology) > Sol Kim (NASA DEVELOP 2016-2017) Woody Turner (NASA HQ) > > October 18, 2017 Thank you for support from mission teams, NASA Applied Sciences, DEVELOP program, and science team members from ECOSTRESS and beyond. Future missions will need to propose a project specific applications program in accordance with this document and presented to ESD for approval at KDP-B. ### Purpose of Directive - Scope / develop applied research and applications as part of mission concept - Demonstrate benefit of project to society - Identify specific applications (and communities of potential) - Increase utility of data products - Foster community of practice who partners with project throughout mission life cycle NASA HEADQUARTERS SCIENCE MISSION DIRECTORATE (SMD) **EARTH SCIENCE DIVISION** DIRECTIVE ON PROJECT APPLICATIONS PROGRAM Approved by: Michael Freilich Director, Earth Science Division Science Mission Directorate, NASA Headquarters 29 June 2016 Future missions will need to propose a project specific applications program in accordance with this document and # Requirement for **future missions** Opportunity to lay groundwork with ECOSTRESS and support HyspIRI's response to this directive Increase utility of data products pr Pι Foster community of practice who partners with project throughout mission life cycle DIRECTIVE ON PROJECT APPLICATIONS PROGRAM Approved by: Michael Freilich Director, Earth Science Division Science Mission Directorate, NASA Headquarters 29 June 2016 MD) # Some important takeaways from the signed directive NASA HEADQUARTERS SCIENCE MISSION DIRECTORATE (SMD) EARTH SCIENCE DIVISION - Provides guidance for a project applications plan - Puts onus on missions to incorporate applications at mission concept and throughout mission life cycle ed by: APPLICATIONS PROGRAM Michael Freilich Director, Earth Science Division Science Mission Directorate, NASA Headquarter ## **Examples of Activities and Deliverables** - Community engagement/assessment - Applied project studies - Project applications plan - Applications Traceability Matrix - Early Adopter workshops and activities - Workshops, Tutorials, Short Courses - Use case studies and reports - Posters / Talks - Simulated data products - Impact assessments # Some important takeaways from the signed directive NASA HEADQUARTERS SCIENCE MISSION DIRECTORATE (SMD) EARTH SCIENCE DIVISION DIRECTIVE ON PROJECT - Provides guidance for a project applications plan - Puts onus on missions to incorporate applications at mission concept and throughout mission life cycle oved by: APPLICATIONS PROGRAM # **Examples of Activities and Deliverables** - Community engagement/assessment - Applied project studies - Project applications plan - Applications Traceability Matrix - Early Adopter workshops and activities - Workshops, Tutorials, Short Courses - Use case studies and reports - Posters / Talks - Simulated data products - Impact assessments # **Community Engagement** # **Applied Project Studies** | Timeframe | Title / Goal | Partner | Status | |-------------------------------|---|---------------------|---| | Summer
2016 | Applying Diurnal ECOSTRESS Temperature and ET to Agriculture | EARTH
University | Final Report and Presentation Available | | Fall 2016 | Analyzing Advantages of ECOSTRESS data as a Tool for Drought Detection and Water management | EARTH
University | Final Report, Presentation
Available, Publication in
progress (Presentation
coming up) | | Fall 2016 –
Summer
2017 | Evaluating Biophysical Parameters of Drought over Guanacaste Region of Costa Rica | EARTH
University | Interim Reports and Presentations Available, Publication in progress (Presentation coming up) | | Fall 2016 –
Summer
2017 | Evaluating performance of ECOSTRESS simulated data in ET model intercomparison over San Francisco Bay Delta | CA DWR | Interim Reports
(Presentation coming up) | | Winter 2017 | Potential Applications of ECOSTRESS
Products in Plant Phenotyping and
Predicting Patterns in Global Species
Richness | USDA | Final Report, Presentation
Available, Publication in
progress (Presentation
coming up) | # Public Health Applications - Gates Foundation Provide proof of concept data on the ability to create unique immature aquatic *Anopheles* species habitat spectral signatures and part of a the Environmental Surveillance and Monitoring System Product- May 1, 2017 6 month funding initially Cambodia (Univ of South Flordia, Bob Novak, PI) - Climate City French Initiative. RS to characterize the urban climate, UHI, air quality, hydrology, social-economic, etc. Luvall member of Scientific Steering Committee. Preparing International Space Act for NASA participation - USAID IDIQ Prevention of Mosquito-Borne Diseases Through Vector Control SOL-OAA-16-000179. Support entomological and epidemiological monitoring and provide technical support for strategic decision making and deployment of vector control interventions for malaria control. 22 countries in Africa. mid May 2017 selection. ### **HyspIRI Application TM** | | | | ÷ | | | |---|-----------------------|----|----|---|--| | | | | | | | | 1 | | _ | _ | | | | L | \mathbf{A}^{\prime} | Á | 7 | 3 | | | | | | ١. | | | | | / | • | | | | | | | | 444 | | | | | | | | | |---|---|---|--|---|---|--|---|---|--|---|--| | Application Question | Application Concept | Application Measurement | Goals | Applied
Sciences
Category | Potential Host Agency Western Governors Association | Mission Data
Product | Projected Mission
Performance | ARL Anci | llary Measuremen | | | | low do we schedule water
eleases & determine
vailability for irrigation use? | The major pathway of water transport in the hydrologic cycle is
evaportanspiration(E). E1 is difficult to measure directly for
large areas and determination of ET relies on a combination of
models and surface parameterizations. Accurate determination
of surface temperatures is critical in model parameterizations. | Spatial variability of landscape elements of fine spacial resolution measurements ~ 6 | 50m. W | /ater Management
griculture | Western Governors Association
1600 Broadway Suite 1700 Denver,
CO 80202 303 623-9378
Sebal North America
1772 Picasso Avenue
Suite E
Davis, California
Phone: (530) 757 9200 | Surface temperature | Measure surface temperature within 0.5 K, 60 m resolution and 5 day repeat cycle. | | models, agricultural cro
management info, strea | | | | What is the species diversity
and habitat of key water
resources. Focused studies at
specific locations e.g.
Comprehensive Everglades
Restoration Plan (CERP) | Characterize ET patterns and functional classification of ecosystems (carbon binding& storage, species diversity), and land-use/type | 30-60m spatial resolution, 3-5 day therm measurements (0.5K) | ECC | OSTRES | Barry Rosen (Vice Chair) Biologist
U.S. Geological Survey Office of | Surface temperature | Measure surface temperature within 0.5 K, 60 m resolution | oncepts | | | | | What is the extent and the
ondition of coral reefs
cosystems ? | Characterize the physical, chemical, and biological status of coastal and estuarine environments and ecosystems worldwide. | Hyperspectral measurements of coastal a
provide spacial & spectral information fo
management. | | | | | Ameliantian | Applied | | | Designated | | What are the abiotic
environmental factors are
mportant in determining the
distribution of disease-causing
vectors and their life-cycles? | mental factors are nt in determining the tion of disease-causing | Spatial variability of landscape elements | | plication
uestion | Application | Concept | Application
Measurement
Requirements | Applied
Sciences
Category | Potential
Host Agency | Data Product | Projected
Mission
Performance | | Monitoring targeted tropical
diseases for elimination-
rpogress & indicators.
Generate disease risk maps
reliable to the date when the
epidemiological survey occurs
and to only the areas covered
with the survey | Assimilation System (LDAS) be used to drive spatially-explicit
ecological modes of NTD vectors distribution & life cycles.
Assimilations will be driven by observational data LDAS and
satellite-derived meteorological forcing data, parameter
datasets, and assimilation observations. | fine spacial resolution measurements "e
Repeat measurements of approximately
required for environmental measurement
for hyperspectral vegetation mapping/ph
status | How can agricultural vulnerability be reduced through the advanced monitoring of crop heat and water stress? How can farmers and water resource agencies reduce vulnerability through improved detection of impending | | ECOSTRESS will be a
evapotranspiration
diurnal cycle due t
overpass cadence of
will allow farmers to
when, and how mu | (ET) through a
to the unique
of the ISS. This
o know where, | Spatial Resolution:
Farm scale <1 km
Latency: <1 week | Water
Resources | EARTH
University,
Water Resource
Agencies, USDA,
FAO | L3 Product:
Evapotranspiration
(ET) | Spatial resolution
of 38m by 69m
and a temporal
resolution of 4
days | | What is the composition of
dust sources globaly and what
role does surface mineralogy
and biotic crusts play in
accessing the impact of dust in
human health. | Global transport of dust is well documented. The health impacts from microrganisms and minerallogy are just now beginning to be understood. The source of the dust is significant in determining its possible health affects. HyspRI hyperspectral measurements would provide global measurements of surface mineralogy and biotic crusts. HyspRI surface thermal measurements would also help identify the variability of dust sources due to surface moisture conditions and map mineralogy | Spatial variability of landscape elements
fine spacial resolution measurements "6
Repeat measurements of approximately
required for environmental measurement
moisture). 19 days for hyperspectral min
mapping. | | | Evaporative Stres
measurements fro
will be able to pr
warnings of droug
variety of agencie | is Index (ESI)
m ECOSTRESS
rovide early
tht allowing a
is to mitigate | Spatial Resolution:
Farm scale <1 km
Latency: <1 week | Water
Resources,
Disasters,
Human
Health and
Air Quality | Water Resource
Agencies, USDA
(Martha
Anderson), FAO | L4 Product:
Evaporative Stress
Index (ESI) | Spatial resolution
of 38m by 69m
and a temporal
resolution of 4
days | | What is the land-use and
oroductivity of the intercastal
waters. & barrier islands, e.g.
whomloring Gulf Wesico -
spawning cycles, migration,
and-use, productivity,
thow does surface water
temperature affect manatee
migration | Characterize the physical, chemical, and biological status of coastal and estuarine environments and ecosystems. Characterize patterns and trends in fine spacial scale river, estuarine, and near coastal water temperatures. | Spatial variability of landscape elements in espacial resolution measurements of Repeat measurements of approximately required for environmental measurement for hyperspectral vegetation mapping/pi status. 30-60m spatial resolution, 3-5 day therm measurements (0.5K). At least 1 nightime measurement within the 3-5 dya window | How co | rought? can remotely used plant enotyping we the speed le of selecting uperior uperior ught/heat erant) crop arieties? | Non-destructive, in
based phenotypin
sensing is a develor
research. ECOSTRE!
plant breeders with
such as Water Us
(WUE) | mage-analysis
ig via remote
oping field of
SS will provide
key plant traits
se Efficiency | Spatial Resolution:
Farm scale <1 km
Latency: <1 week | Water
Resources,
Capacity
Building | USDA, FAO | L3 Product:
Evapotranspiration
L4 Products:
Evaporative Stress
Index (ESI) and
Water Use
Efficiency (WUE) | Spatial resolution
of 38m by 69m
and a temporal
resolution of 4
days | | | | | the urba
effect a
these | contributes to
an heat island
and how can
e effects be
itigated? | The urban heat is results in increased health risks, ar Understanding the factors can all planners/managers effect by addressin that lead to it [i.e. albedo | energy, costs,
and ozone.
contributing
llow city
to mitigate this
ng the factors
increase roof | Spatial Resolution:
Urban scale <1 km
Latency: Seasonal | Human
Health and
Air Quality | City
Planners/Manag
ers | L2 Product: Land
Surface
Temperature | Spatial resolution
of 38m by 69m
and a temporal
resolution of 4
days | | | | | build ca
US and
improve
applicat | an ECOSTRESS
apacity in the
d beyond for
ed access and
tions of NASA
Observations? | Participants and pr
in the NASA DEVELO
utilizing simulated E
products. Collab
increased participal
capacity to apply I | OP program are
COSTRESS data
oration has
nt and partner | | | | | | Science. # **Tutorials, Workshops, Short Courses** | Tutorial | Team | Participants | | | |--|---------------------------------|--------------------------|--|--| | Summer 2016: Tutorial to produce simulated ECOSTRESS Land Surface Temperature | Led by Glynn Hulley | UCDavis, USDA, NOAA, JPL | | | | Summer 2016: An overview of evapotranspiration and agricultural applications | Led by DEVELOP team | EARTH University, JPL | | | | Fall 2016: Using Google Earth Engine to process and produce NDVI/ET maps | Led by Sol Kim and DEVELOP team | EARTH University | | | #### GOOGLE EARTH ENGINE (GEE) TUTORIAL NASA DEVELOP NATIONAL PROGRAM – JET PROPULSION LABORATORY FALL 2016 COSTA RICA AGRICULTURE II EARTH UNIVERSITY This tutorial requires **NO** coding experience or familiarity with GEE. You **MUST** have an approved account to use GEE: https://earthengine.google.com/signup. This tutorial will serve to act as a showcase of some capabilities that are possible with GEE. It is NOT meant to cover every detail of coding in GEE. We will cover a few basics of GEE using javascript: - 1. Overview - 2. Datasets - 3. Graphical User Interface (GUI) - 4. Importing Datasets - Raster math - 6. Importing Shapefiles OVERVIEW Credit: Sol Kim ### **Tutorials, Workshops, Short Courses** | Tutorial | Team | Participants | | | |---|---------------------------------|--------------------------|--|--| | Summer 2016: Tutorial to produce simulated ECOSTRESS Land Surface Temperature | Led by Glynn Hulley | UCDavis, USDA, NOAA, JPL | | | | Summer 2016: An overview of evapotranspiration and agricultural applications | Led by DEVELOP team | EARTH University, JPL | | | | Fall 2016: Using Google Earth Engine to process and produce NDVI/ET maps | Led by Sol Kim and DEVELOP team | EARTH University | | | #### GOOGLE EARTH ENGINE (GEE) TUTORIAL NASA DEVELOP NATIONAL PROGRAM -JET PROPULSION LABORATORY FALL 2016 COSTA RICA AGRICULTURE II EARTH UNIVERSITY This tutorial requires NO coding experience or familiarity with GEE. You MUST have an approved account to use GEE: https://earthengine.google.com/signup. This tutorial will serve to act as a showcase of some capabilities that are possible with GEE. It is NOT meant to cover every detail of coding in GEE. We will cover a few basics of GEE using iavascript: 1. Overview 2. Datasets 3. Graphical User Interface (GUI) 4. Importing Datasets Raster math 6. Importing Shapefiles Credit: Sol Kim Increase partnerships around applied work with LP-DAAC and other areas in NASA ASP (Capacity Building, DEVELOP, ARSET). ### White Papers (Pre-cursor to Use Cases) # Future Considerations and Plans for ECOSTRESS and HyspIRI - ECOSTRESS progress towards building applications can help HyspIRI get a headstart on the PAP / NASA directive - Continue to leverage various resources to demonstrate ECOSTRESS / HyspIRI applications utility - Need to actively centralize use cases and user data requirements for applications - If there are value-added applications products, we would like to hear about them and scope out the opportunity christine.m.lee@jpl.nasa.gov hyspiri.jpl.nasa.gov ecostress.jpl.nasa.gov